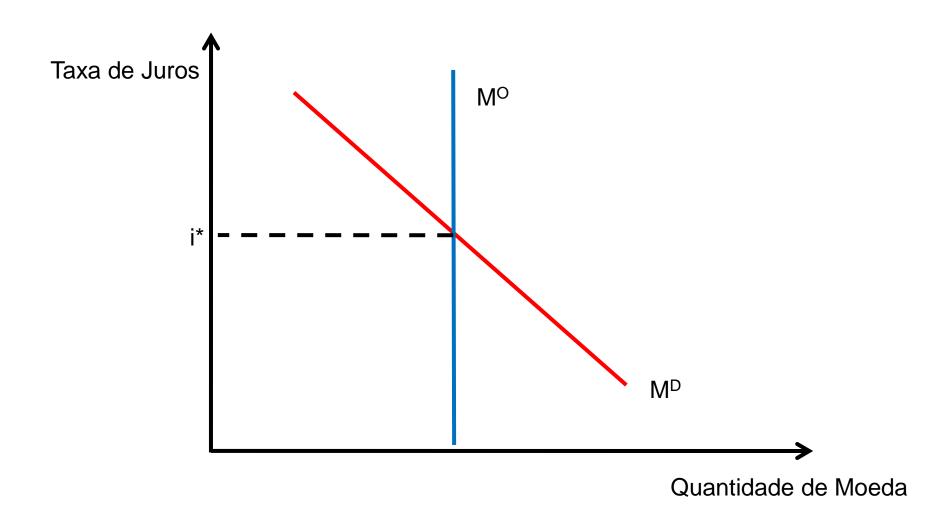
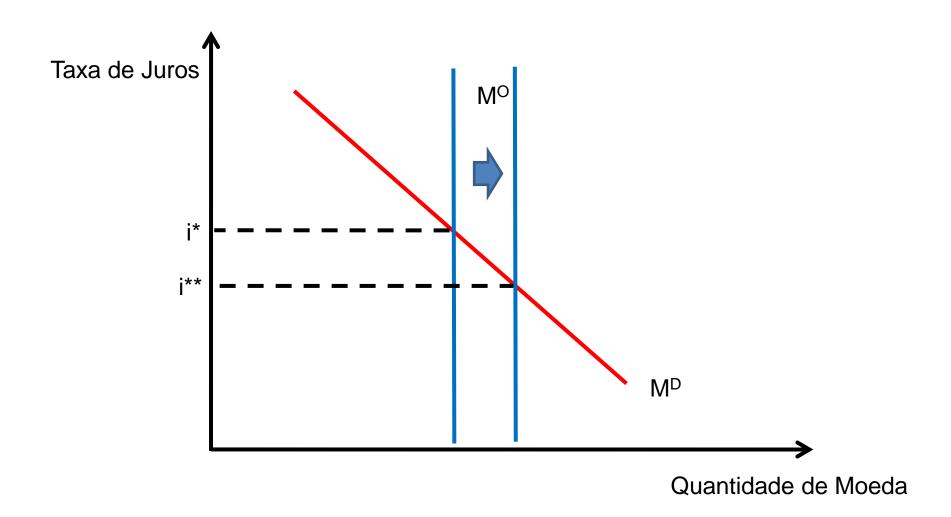

Derivativos e o Mercado de Renda Fixa

Professor José Renato Ornelas


Derivativos e Mercado de Renda Fixa no Brasil


- Os derivativos de juros no Brasil são muito líquidos e constituem um elemento essencial no mercado de renda fixa no Brasil
 - Os futuros de DI são um dos derivativos de juros mais negociados no mundo
- O mercado de renda fixa no Brasil pode ser segmentado pelo tipo de emissor:
 - Tesouro Nacional
 - Instituições Financeiras: interbancário e para clientes
 - Empresas não financeiras
- Todo o mercado de renda fixa é condicionado pela política monetária conduzida pelo banco central

- Famílias
 - Decisões de poupança
 - Efeito renda (títulos pré-fixados)
 - Expectativas
 - Outros
- Empresas
 - Nível de investimentos
 - Contratação/demissão de empregados
 - Outros

Taxas de Juros Brasileiras

- Os principais Benchmarks de Renda Fixa no Brasil são Taxas de um dia: Taxa Selic e a Taxa DI-Cetip
- A taxa Selic (*overnight*) é calculada como uma média das operações compromissadas de um dia.
- A taxa DI-Cetip é calculada como uma média aparada das taxas dos Depósitos Interfinanceiros
 - Os Depósitos Interfinanceiros são feitos entre instituições financeiras para gerenciamento de caixa, e não possuem qualquer tipo de garantia

Outras Taxas de Juros Brasileiras

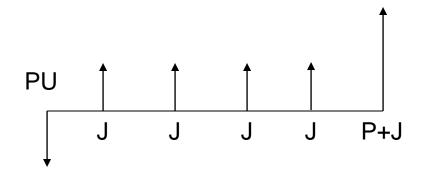
- TJLP e TLP
 - Utilizada em operações do BNDES (principalmente)
- Taxa Referencial (TR)
 - É calculada aplicando-se o redutor na TBF
 - Serve de base para Caderneta de Poupança, FGTS..

Índices de Renda Fixa

- Assim como em renda variável temos índices de ações como o Ibovespa, em Renda Fixa também existem índices de referência (Benchmark)
- A Ambima calcula o Índices de Mercado da Andima (IMA)
- São calculados com base na evolução do valor de mercado de carteiras compostas por títulos públicos.
- O IMA possui subdivisões por tipo de indexador:
 - IRF-M: títulos prefixados (LTN e NTN-F);
 - IMA-C: títulos atrelados ao IGP-M (NTN-C);
 - IMA-B: títulos atrelados ao IPCA (NTN-B);
 - IMA-S: títulos atrelados à Taxa SELIC (LFT)

Índices de Renda Fixa

- Para os títulos no mercado externo (em dólares americanos), o EMBI (*Emerging Markets Bond Index*) é o índice mais conhecido para mercados emergentes
- O EMBI possui um sub-índice para cada país emergente que faz emissões soberanas consideradas líquidas
- Uma das medidas mais conhecidas do chamado Riscopaís é o spread entre a taxa dos títulos pertencentes ao EMBI e a taxa dos títulos do governo americano

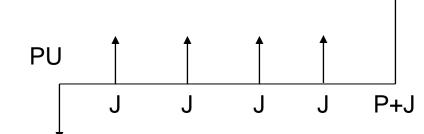

Mercado de Renda Fixa

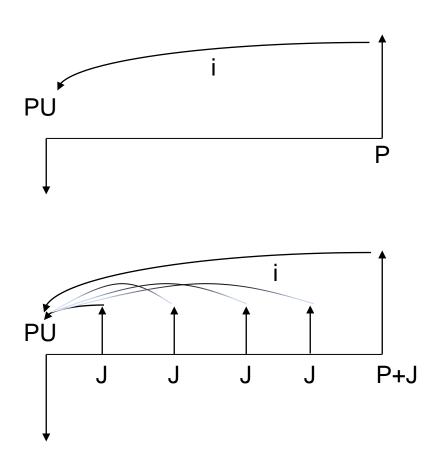
- Emissores: empresas não financeiras, instituições financeiras e governos
- Finalidade:
 - Empresas não financeiras: financiar investimentos, capital de giro, caixa, rolagem
 - Instituições financeiras: emprestar para empresas ou outras instituições financeiras, e fazer investimentos em títulos diversos
 - Governos: financiar investimentos, cobrir déficits orçamentários, rolagem

- Custódia
 - Títulos Públicos: Sistema Selic
 - Títulos Privados: B3 e Tokens
- Negociação por telefone, mas também existem sistemas eletrônicos, como na B3 e das plataformas de crowdfunding

Conceitos básicos:

- Preço unitário (PU)
- Principal (P) ou Valor de Face
 - Em geral R\$ 1.000,00 (eventualmente corrigido)
- Juros (J) ou Cupom
 - Em geral são semestrais
- Yield (y), Yield to Maturity (YTM) ou taxa do título (i)




Tipos de Títulos

Sem pagamentos de juros (Zero-Coupon)

PU

Com pagamento de juros periódicos

 No Brasil, a LTN, LFT e a NTN-B Principal são exemplos de títulos que não pagam cupom de juros (Zero coupon)

 Já a NTN-F, NTN-B e NTN-C possuem pagamento de cupom de juros

Relação entre Taxa ou Yield (i) e Preço Unitário (PU)

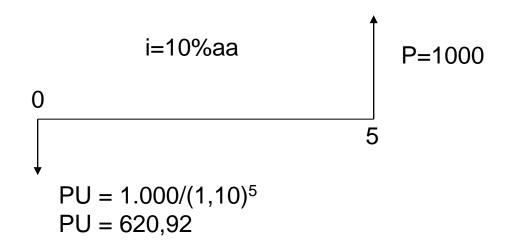
Sem Cupom com vencimento em T

$$PU = \frac{P}{\left(1+i\right)^T}$$

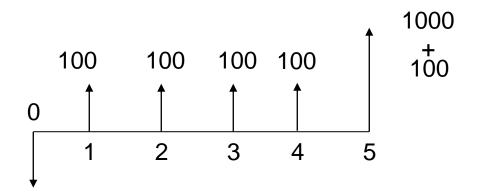
Titulo com k Cupons de valor J

$$PU = \frac{P}{\left(1+i\right)^{T}} + \sum_{k} \frac{J}{\left(1+i\right)^{t_{k}}}$$

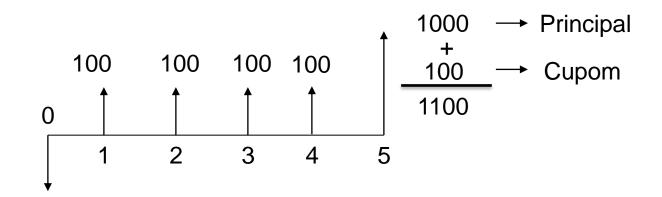
$$PU = \frac{P}{(1+i)^{T}}$$


$$PU = \frac{P}{(1+i)^{T}} + \sum_{k} \frac{J}{(1+i)^{t_{k}}}$$

Note que *i* é a Taxa Interna de Retorno (TIR) do fluxo de caixa do título


Exemplo de título sem cupom:

- Como calcular o preço de um título pré-fixado com as seguintes características:
- Título com Principal: \$1.000,
- Prazo: 5 anos
- Yield to Maturity: 10% aa


Exemplo de título com cupom:

- Calcular o preço de um título com as seguintes características:
- Título com Principal: \$1.000
- Cupom anual: \$ 100
- Prazo: 5 anos
- Yield to Maturity: 15% aa

Exemplo:

- Calcular o preço de um título com as seguintes características:
- Título com Principal: \$1.000
- Cupom anual: \$ 100
- Prazo: 5 anos
- Yield to Maturity: 15% aa

$$PU = 100/1,15 + 100/1,15^2 + 100/1,15^3 + 100/1,15^4 + 1100/1,15^5$$

 $PU = 832,39$

- Títulos Indexados ou Pós-Fixados
 - Retorno total do título é a taxa de juros mais o índice de correção (ex: IPCA, IGPM, Selic, Dólar)
 - No caso de um índice de inflação, diz que a taxa de juros é real
 - Valor do principal é corrigido pelo índice em questão
 - Podemos imaginar esses títulos de forma similar aos préfixados, só que com um <u>numerário</u> diferente.
 - O valor do título pode ser calculado considerando-se um valor de face de 1, de depois corrigindo-se pelo valor original atualizado

Sigla	Correção	Cupom de Juros	Derivativo relacionado
LTN	Pré-Fixado	Não tem	DI Futuro
NTN-F	Pré-Fixado	Semestral, 10% ao ano	DI Futuro
NTN-B	IPCA	Semestral, 6% ao ano	Futuro de DAP
NTN-B Principal	IPCA	Não tem	Futuro de DAP
NTN-C	IGP-M	Semestral, 6% ou 12% ao ano	
LFT	Taxa Selic	Não tem	

Dias Úteis

- No mercado brasileiro, a convenção de contagem de dias é baseada em dias úteis
- É a chamada base 252, já que assume-se que um ano possui 252 dias úteis (DU)
- Quando se calcula uma taxa anual ou anualizada, assume-se um ano com 252 DU
- Para calcular DU: http://elekto.com.br/Tools/Prazos

Dias Úteis – LTN ou DI Futuro

Por exemplo, considere a seguinte LTN 1/1/2018

- Taxa: 13,30% ao ano (base 252)
- Preço: 728,23
- A conversão da taxa em preço é feita considerando-se o número de dias úteis
- Em 15/06/2015, faltavam 640 dias úteis para o vencimento em 1/1/2018

$$PU = \frac{\text{Princ}}{\left(1+i\right)^{T}} = \frac{1.000}{\left(1+i\right)^{DU/252}} = \frac{1000}{\left(1+0,1330\right)^{640/252}} = 728,23$$

Preço e Taxa da LTN ou DI Futuro

A partir do preço da LTN podemos calcular a taxa de forma direta:

$$PU = \frac{1.000}{(1+i)^{DU/252}}$$

$$\langle = = \rangle$$

$$i = \frac{21.000}{4} = \frac{252}{4} = \frac{252}{4} = \frac{2}{4} =$$

Preço e Taxa da LTN ou DI Futuro

No exemplo anterior:

$$i = \left(\frac{1000}{PU}\right)^{252/DU} - 1 = \left(\frac{1000}{728,23}\right)^{252/640} - 1 = \left(1,3731925\right)^{252/640} - 1 = 13,30\%$$

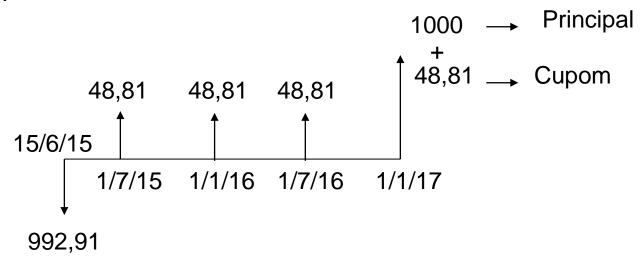
Cupom de Juros

- A taxa de Cupom de Juros de 10% ao para a NTN-F e de 6% ao ano das NTN-B's são taxas chamadas "efetivas".
- Isso significa que os pagamentos semestrais devem ser tais que a sua composição por juros compostos seja igual a esta taxa efetiva.
- Então no caso da NTN-B, se a taxa efetiva é de 6% ao ano, o pagamento de uma taxa de cupom semestral (chamaremos de c) deve ser de:

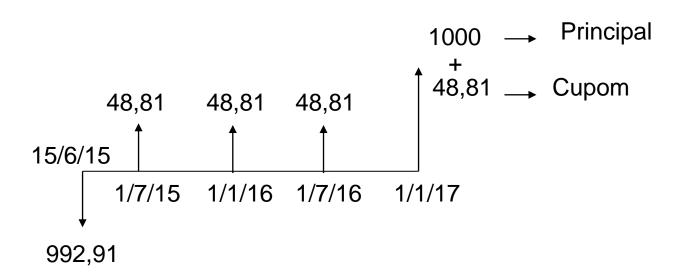
$$(1+6\%) = (1+c)^2$$
 \Rightarrow $c = (1,06)^{1/2} - 1 = 2,956\%$

Esse percentual deve ser aplicado ao valor do principal corrigido

Cupom de Juros

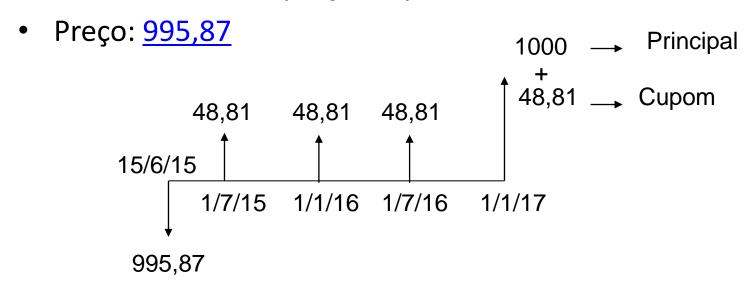

- No caso da NTN-F, a taxa de Cupom de Juros é de 10% efetiva
- Se a taxa efetiva é de 10% **ao ano**, o pagamento de taxa de cupom **semestral** deve ser de:

$$(1+10\%) = (1+c)^2$$
 \Rightarrow $c = (1,10)^{1/2} - 1 = 4,88089\%$


- Esse percentual deve ser aplicado ao valor do principal da NTN-F, que é de R\$ 1.000 e não tem correção
- Portanto, o valor do cupom é de 48,81

NTN-F

- Por exemplo, considere a NTN-F 1/1/2017
- Taxa: 13,95% ao ano (base 252)
- Preço: 992,91
- Em 15/06/2015, faltavam 391 dias úteis para o vencimento
- Teríamos ainda 3 pagamentos de cupom: 1/7/2015, 1/1/2016
 e 1/7/2016

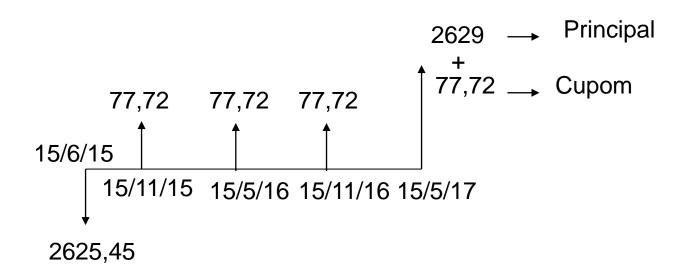

NTN-F

$$PU = \frac{48,81}{\left(1+0,1395\right)^{12/252}} + \frac{48,81}{\left(1+0,1395\right)^{140/252}} + \frac{48,81}{\left(1+0,1395\right)^{264/252}} + \frac{1000+48,81}{\left(1+0,1395\right)^{264/252}} = 992,92$$

NTN-F

• E se tivermos um preço, e quiséssemos calcular a taxa?

 Precisamos calcular a TIR do fluxo acima, ou seja, calcular a taxa i que torna o VPL do fluxo igual a zero


$$\frac{48,81}{\left(1+i\right)^{12/252}} + \frac{48,81}{\left(1+i\right)^{140/252}} + \frac{48,81}{\left(1+i\right)^{264/252}} + \frac{1000+48,81}{\left(1+i\right)^{391/252}} = 995,87$$

NTN-B e o VNA

- Para títulos indexados como a NTN-B, podemos calcular como na NTN-F e depois usar o VNA – Valor Nominal Atualizado
- Começou em 1.000 na data-base (ex: 15/7/2000) e depois foi sendo corrigido pelo indexador – <u>IPCA</u>, <u>IGPM</u>, Selic

DATA	VALORES NOMINAIS DE NTN-B
15/12/13	2.341,485922
15/01/14	2.363,026594
15/02/14	2.376,026557
15/03/14	2.392,414314
15/04/14	2.414,425685
15/05/14	2.430,602866
15/06/14	2.441,781967
15/07/14	2.451,548971
15/08/14	2.451,796707
15/09/14	2.457,928181
15/10/14	2.471,937669
15/11/14	2.482,317820
15/12/14	2.494,977146
15/01/15	2.514,436833
15/02/15	2.545,614447
15/03/15	2.576,668194
15/04/15	2.610,682389
15/05/15	2.629,219259
15/06/15	2.648,672752

NTN-B

- O cupom que originalmente era 29,56, agora é 77,72
- O valor nominal que originalmente era de 1.000, agora é de 2.629,22

LFT

- A LFT é considerada o papel mais seguro, já que é indexada diariamente (pela Selic) e possui garantia do Tesouro Nacional
- Também possui um VNA, que é corrigido pela Selic
- Assim como a NTN-B, também é negociada como uma taxa acima do indexador
- A diferença é que o indexador é uma taxa de juros (Selic) e não uma taxa de inflação (IPCA)
- Desta forma, a taxa acima da Selic é muito baixa!
- No caso da LFT essa taxa é chamada de prêmio

Tesouro Direto

Título		Rentabilidade anual	Investimento mínimo	Preço Unitário	Vencimento	
TESOURO PREFIXADO 2027	?	10,39%	R\$ 30,55	R\$ 763,77	01/01/2027	Simule
TESOURO PREFIXADO 2031	?	11,26%	R\$ 34,26	R\$ 489,53	01/01/2031	Simule
TESOURO PREFIXADO com juros semestrais 2035	?	11,25%	R\$ 38,21	R\$ 955,32	01/01/2035	
TESOURO SELIC 2027	?	SELIC + 0,1047%	R\$ 146,41	R\$ 14.641,20	01/03/2027	Simule
TESOURO SELIC 2029	?	SELIC + 0,1486%	R\$ 145,79	R\$ 14.579,64	01/03/2029	Simule
TESOURO IPCA+ 2029	?	IPCA + 5,77%	R\$ 32,02	R\$ 3.202,47	15/05/2029	Simule
TESOURO IPCA ⁺ 2035	?	IPCA + 5,89%	R\$ 45,25	R\$ 2.262,82	15/05/2035	Simule
TESOURO IPCA ⁺ 2045	?	IPCA + 5,96%	R\$ 37,89	R\$ 1.263,16	15/05/2045	Simule
TESOURO IPCA ⁺ com juros semestrais 2035	?	IPCA + 5,87%	R\$ 44,10	R\$ 4.410,19	15/05/2035	Simule
TESOURO IPCA ⁺ com juros semestrais 2040	?	IPCA + 5,89%	R\$ 43,52	R\$ 4.352,71	15/08/2040	Simule
TESOURO IPCA ⁺ com juros semestrais 2055	?	IPCA + 5,92%	R\$ 44,22	R\$ 4.422,79	15/05/2055	Simule
TESOURO RENDA ⁺ aposentadoria extra 2030	?	IPCA + 5,91%	R\$ 36,58	R\$ 1.829,19	15/12/2049	Simule
TESOURO RENDA ⁺ aposentadoria extra 2035	?	IPCA + 5,94%	R\$ 41,03	R\$ 1.367,79	15/12/2054	Simule
TESOURO RENDA [†] aposentadoria extra 2040	?	IPCA + 5,95%	R\$ 30,73	R\$ 1.024,45	15/12/2059	Simule
TESOURO RENDA ⁺ aposentadoria extra 2045	?	IPCA + 5,97%	R\$ 30,58	R\$ 764,62	15/12/2064	Simule

- São operações no mercado financeiro em que um agente empresta recursos para outro, recebe como garantia títulos
- No Brasil, esse mercado possui como garantia títulos públicos federais
- Os títulos servem como uma garantia caso o tomador de recursos não devolva o dinheiro no prazo
- Neste caso, o emprestador (doador) poderia vender os títulos no mercado para recuperar o dinheiro

- As operações são implementadas como uma:
 - Compra com compromisso de revenda (emprestador)
 - Venda com compromisso de recompra (tomador)
- Portanto, cada operação compromissada é composta de uma operação a vista, e outra a termo
- A taxa que o tomador paga pelo empréstimo dos recursos está implícita nos preços das duas pernas da operação

- As compromissadas são o principal instrumento usado pelo Banco Central para atingir a meta de inflação
- O Copom define uma meta para a taxa Selic a cada reunião, que normalmente ocorrem a cada 45 dias, aproximadamente.

- As compromissadas são usadas para **controlar a taxa Selic** (de um dia ou *overnight*), também chamada de taxa básica.
- Isso pq a taxa Selic *overnight* é calculada como uma média aparada dessas operações compromissadas de um dia.
- Diariamente, Demab do Banco Central faz operações para enxugar ou injetar liquidez no sistema forçando a taxa Selic a convergir para a meta.
- Se houver excesso de liquidez, o Demab reduz a liquidez, e viceversa.

- Estas operações tradicionalmente possuem o prazo de um dia útil.
- Nos últimos anos, no entanto, o Banco Central passou a fazer operações compromissadas com prazos mais longos, em função do excesso de liquidez persistente no mercado monetário
- As operações compromissadas são usadas por bancos, instituições financeiras, fundos de investimento para gerenciamento do caixa

- As operações compromissadas possuem duas "pernas":
 - 1ª: Compra/Venda
 - 2ª: Revenda/Recompra
- Quem compra com compromisso de revenda está "aplicando" os recursos
- Quem vende com compromisso de recompra está "tomando" recursos

 A taxa pela qual a operação é feita está implícita nos preços das duas pernas:

Taxa = (preço da 2ª perna / preço da 1ª perna)^{252/prazo} - 1

- O preço da 1ª perna é normalmente um valor inferior ao preço de mercado (PU550)
- Desta forma, mesmo uma queda nos preços, a "garantia" cobriria o dinheiro investido

- O Futuro de DI tem sido o derivativo com maior volume nocional negociado da B3/BM&F
- Serve para assumir posições compradas ou vendidas em taxas pré-fixadas de DI
- Negocia-se a taxa de juros de hoje até o vencimento do contrato
- Essa taxa pode ser convertida num preço de título pré-fixado.

- Preço Unitário x Taxa de Juros
 - Negocia-se no pregão a taxa de juros
 - Essa taxa pode ser convertida de maneira única em Preço Unitário de um título com principal igual a R\$ 100.000,00
 - $-PU = 100.000 / (1 + i)^{(n/252)}$

Onde i é a taxa de juros negociada, n o número de dias úteis até o vencimento

- Preço Unitário x Taxa de Juros
 - Posição comprada em PU = Posição vendida em Taxa e vice-versa
 - Posição comprada em PU ou vendida em Taxa equivale a:
 - Posição comprada em título pré-fixado
 - Aposta numa queda das taxas de juros.
 - Posição vendida em PU ou comprada em Taxa equivale
 - Posição vendida em título pré-fixado
 - Aposta numa subida das taxas de juros.

Ajuste Diário

Operações realizadas no dia:

$$AD = (PA_t - PO) \times Tam \times Q$$

• Operações em aberto:

$$AD = (PA_t - FC_t \times PA_{t-1}) \times Tam \times Q$$

Onde **AD** é o valor do ajuste diário, **PA**_t o valor de ajuste do índice do dia t, **PO** o preço da operação, **FC** o fator que corrige pelo CDI do dia anterior, **Tam** o valor de cada ponto do PU e **Q** o número de contratos

Fator de Conversão:

$$FC_t = (1 + CDI_{t-1})^{(1/252)}$$

Exemplo:

- DI com vencimento em um ano ou 252 dias úteis é negociado hoje à taxa de 15% ao ano.
 - Isso corresponde a um PU de 86,956.52
- Suponha que um investidor vendeu 5 contratos à taxa de 15%
 - o mesmo que comprar ao PU de 86,956.52
- A taxa de ajuste ao final do dia foi de 14,90%
 - corresponde a um PU de 87,032.20
- O ajuste desse dia será de: (87,032.20 86,956.52) x 5 = R\$ 378,40

Exemplo (continuação):

- No dia seguinte, o investidor não faz nenhum negócio e a taxa de ajuste é de 14%, ou seja, PU de Ajuste de 87,764.92 (cálculo: 100.000 / (1 + 14%)^(251/252))
- O CDI do dia foi de 14%
- O ajuste desse dia será de:

$$(87,764.92 - 87,032.20 \times (1+14\%)^{1/252}) \times 5 = R$ 3.437,27$$

Ajuste do dia atual dia anterior

Exemplo (continuação):

 Mais um dia se passa, e o investidor não faz nenhum negócio e a taxa de ajuste foi novamente de 14%, com PU de Ajuste de 87,810.57

```
( cálculo: 100.000 / (1 + 14\%)^{(250/252)} )
```

- O CDI do dia foi de 14%
- O ajuste desse dia será de:

$$(87,810.57 - 87,764.92 \times (1+14\%)^{1/252}) \times 5 = Zero$$
Ajuste do Ajuste do dia anterior dia atual

Exemplo (continuação):

 Mais um dia se passa, e o investidor fecha a operação a uma taxa de 14% com PU de Ajuste de 87,856.23

```
( cálculo: 100.000 / (1 + 14\%)^{(249/252)} )
```

- O PU de Ajuste foi de 87,477.14, ou seja, taxa de 14,5%
- O CDI do dia foi de 14,5%
- O ajuste desse dia será de:

```
(87,477.14 - 87,810.57 \times (1+14,5\%)^{1/252}) \times 5 + (87,477.14 - 87,856.23) \times -5 = -R$ 7,63
```

AjusteDiario_DI.xls

Ajuda a calcular os ajustes diários dos contratos Futuros de DI.

- Os diversos vencimentos de contratos de DI Futuro permitem a construção de em Estrutura a Termo de Taxa de Juros (Curva de Juros Pré-Fixada)
- Os futuros de DI permitem o *hedge* de carteiras pré-fixadas.
- Os futuros de DI permitem apostas no aumento ou na queda das taxas de juros.

• Como transformar uma operação pré-fixada em pós-fixada?

	Investidor Pré	Tomador Pré
Risco	Alta da taxa	Baixa da taxa
Operação	Compra de taxa (venda de PU)	Venda de taxa (compra de PU)
Descrição	Se as taxas sobem, preço do título pré cai, mas é compensado pelos ajustes diários	Se as taxas caem, valor da dívida sobre, mas é compensada pelos ajustes diários

• Como transformar uma operação pós-fixada em pré-fixada?

	Investidor Pós	Tomador Pós
Risco	Baixa da taxa	Alta da taxa
Operação	Venda de taxa (compra de PU)	Compra de taxa (venda de PU)
Descrição	Se as taxas caem, rendimentos dos títulos pós caem, mas é compensado pelos ajustes diários	Se as taxas sobem, serviço da dívida sobe, mas é compensado pelos ajustes diários

Exercício:

- Uma empresa possui **hoje** uma dívida de 2 anos (504 dias úteis) de R\$ 10 milhões corrigida pelo CDI e deseja converte-la em dívida pré-fixada também de 2 anos.
- A taxa do futuro de DI com vencimento em 2 anos está em 14% aa
- Quantos contratos desse futuro a empresa deve comprar ou vender ?

Exercício Resolvido:

- Dívida da empresa **hoje** é de R\$ 10 milhões
- O PU do contrato futuro é de 76.946,75 (cálculo: 100.000 / (1 + 14%)(504/252))

- Dividindo R\$ 10 milhões por 76.946,75 temos aproximadamente 130 contratos
- A empresa deve então comprar (taxa) 130 contratos

Mercado Derivativo de Cupom de IPCA

Derivativos de Cupom de IPCA

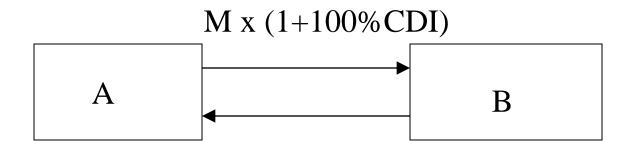
• Balcão: swap DI x IPCA

Bolsa: Futuros de DAP

Cupom de IPCA

- Sem muito rigor, é a taxa de juros real quando a inflação é o IPCA
- Ex-ante: Taxa Pré (DI-futuro) Inflação Implícita.
 - também é negociado em uma NTN-B sem cupons (na verdade, na NTN-B, o cupom de IPCA é a taxa de uma LTN menos a Inflação Implícita)
- *Ex-post* (cupom de IPCA realizado): DI acumulado IPCA realizado.
 - Esse é o ativo-objeto dos derivativos de cupom de IPCA

Cupom de IPCA x Taxa de Juros Real


- Entretanto, a inflação e o DI acumulado para o cálculo do cupom de IPCA realizado não estão no mesmo período
 - O DI é sempre entre a data de compra e a data de vencimento do contrato.
 - O IPCA é defasado de 15 dias corridos
- Portanto, o cupom de IPCA não é exatamente a taxa de juros real do período (nem o *ex-ante* nem no *ex-post*).

Cupom de IPCA

- Desta forma, mais especificamente, o ativo-objeto dos derivativos de cupom de IPCA é
 - o CDI acumulado da data da transação até o vencimento do contrato menos

 o IPCA de 15 dc antes da data da transação até 15 dc antes do vencimento do contrato

Swap DI x IPCA

M x Fator de Var IPCA x (1+C_IPCA)

Swap DI x IPCA

Exemplo: Um fundo de previdência aplicou, em 15/03, R\$ 10 milhões a 100% CDI, a ser resgatado em 5 anos. Para se *hedgear* deseja fazer um swap para IPCA. O cupom de IPCA para o swap é 3,98% a.a.

Suponha que 100% do DI efetivo no período tenha sido 8,3% a.a e que o IPCA tenha sido de 4,9% a.a. Quais os fluxos de caixa do fundo?

Mercado Futuro de Cupom de IPCA (DAP)

Contrato Futuro de Cupom de IPCA (DAP)

- É o instrumento de proteção para as NTN-Bs na Bolsa. Mais precisamente, seria um hedge perfeito para uma NTN-B principal, pois ele negocia o cupom de IPCA à vista.
- A data de vencimento é o 15° dia do mês de vencimento do contrato (ou no dia útil posterior).
- Lote padrão: 5 contratos (de 5 em 5)

Contrato Futuro de Cupom de IPCA (DAP)

O Preço Unitário (PU) na data de negociação é igual ao preço na data de vencimento (100.000 pontos) descontado pela taxa do DAP anualizada (C_IPCA), proporcional ao número de dias úteis até a data de vencimento do contrato (n).

$$PU = \frac{100.000}{(1 + C IPCA)^{n/252}}$$

Ajuste diário do DAP

O Ajuste diário (em R\$) para o investidor vendido por contrato referente ao dia *t* é dado por

$$Ajuste_t = (PA_t - PA_{corr,t}) \times 0.00025 \times I IPCA_t$$

PA, se refere ao PU de ajuste da data t

 $PA_{corr.\,t}$ é o PA_{t-1} corrigido para o dia t (próximo slide)

0,00025 é o valor de cada ponto do PU do contrato de DAP

 $I_{-}IPCA_{t}$ é o valor do índice IPCA na data t (que se refere a 15 dc antes) — muitas vezes é um I_IPCA projetado

Ajuste diário do DAP

O PU de Ajuste Corrigido (PA_{corr}) para o dia t é

$$PA_{corr, t} = PA_{t-1} \times \left(\frac{1 + DI_{t-1}}{I - IPCA_{t}}\right)$$

$$\frac{I - IPCA_{t-1}}{I - IPCA_{t-1}}$$

Resultado do DAP

O Resultado da Compra de contratos de DAP:

A soma dos ajustes até o vencimento é

$$(PU \times (1+C_{IPCA_{realizado}}) - 100.000) \times 0,00025$$

 $\times I_{IPCA_{venc}} \times \# contratos$

Índice IPCA

- Como visto, a variação do índice IPCA de 15 dc antes (a variação entre o I_IPCA_{t-1} e I_IPCA_t) é utilizada para o cálculo do ajuste diário
- Há 3 casos para o índice IPCA:
 - ✓ Caso 1: Quando se está no dia 15. Neste caso não há dificuldades, pois o índice IPCA é o índice que contempla o mês anterior.
 - ✓ Caso 2: Entre a divulgação do IPCA e o dia 15
 - ✓ Caso 3: Entre o dia 15 e a divulgação do novo IPCA. Nesse caso, não se sabe o índice IPCA de 15 dc antes

Índice IPCA

Ex do Caso 2: Hoje é 9/6 e o IPCA de maio já foi divulgado.

- ✓ o número de dias úteis entre o 15 de maio e 15 de junho (exclusive) é de 21 dias úteis; e
- ✓ o número de dias úteis entre o 15 de maio e a data de cálculo e o é de 15 dias úteis.

$$I_IPCA_{13/6} = I_IPCA_{15/5} (1+IPCA_{maio})^{15/21}$$

Índice IPCA: IPCA Projetado

Caso 3: Os períodos em que não se sabe o índice IPCA de 15 dc antes ocorrem entre o dia 15 de cada mês (em que se sabe o IPCA 15 dc antes) e o dia da divulgação do novo IPCA.

• Nesse caso, o índice utilizado é o Índice IPCA pro rata calculado a partir da expectativa de inflação do IPCA divulgada pela Anbima.

Exemplo Especulação

Dados de mercado:

- DI-fut (6m) = 10% a.a (suponha que essa seja a inferência sobre o DI acumulado do período)
- $I_{IPCA_{t=0}} = 3966,416$

A expectativa de inflação do especulador para 6 meses: 1,0086%.

Ou seja, $E[I_IPCA_{venc}] = 4.006,420$.

Assim, a expectativa para o cupom de IPCA é 7,81% a.a para 6 meses.

Entretanto, o DAP está sendo negociado a 7% a.a (II = 1,39%)

Operação: Especulação comprando 20 contratos de DAP. Calcule o resultado esperado.

Exemplo Especulação

Resultado esperado = 0,00025 x PU x $E[I_IPCA_{venc}]$ x $(E[C_IPCA_{realizado}]-C_IPCA_{DAP})$ x 20

```
Se E[I\_IPCA_{venc}] = 4.006,42 e

E[C\_IPCA_{realizado}] = 7,814\% a.a (= 3,834% a.s)
```

Resultado esperado = 7.607,79

Número de contratos para hedge

Por isso, quando quero hedgear um valor financeiro *V* devo dividi-lo por 0,00025 x PU x I_IPCA₀ para achar o número de contratos a serem negociados.

$$#contratos = \frac{V}{0,00025 \text{ x PU x I_IPCA}_0}$$

Exemplo – hedge Pré por Pós

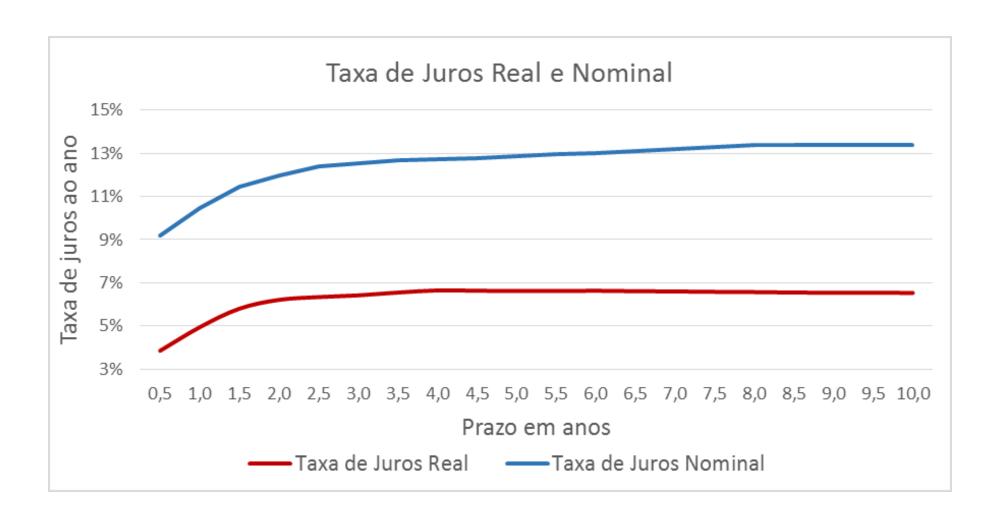
Exemplo: Um investidor possui 1000 NTN-Bs Principais que vencem em 1 ano. O PU do título vale 936,33 e seu VNA (VF) vale 1000. A taxa negociada no contrato de cupom de IPCA futuro (DAP) com mesmo vencimento é a mesma da NTN-B e a taxa do DI-futuro de mesmo prazo é 10%. O índice IPCA vale 4.000. O investidor está com receio de que o cupom de IPCA "abra" e utiliza contratos de DAP para se hedgear.

- Qual operação ele deve realizar?
- Se o IPCA e o DI acumulados no período são, respectivamente, 2% e 10%, calcule o valor do *hedge* e o fluxo de caixa líquido do investidor.

Exemplo – hedge Pré por Pós

C_IPCA no mercado futuro está sendo negociado na mesma taxa da NTN-B:

$$C IPCA = \frac{1000}{PU} - 1 = 6,80\%$$


PU do Contrato Futuro de Cupom de IPCA (DAP)

$$PU = \frac{100000}{1 + 6,80\%} = 93.633$$

Curvas de Juros ou Estrutura a Termo das Taxas de Juros

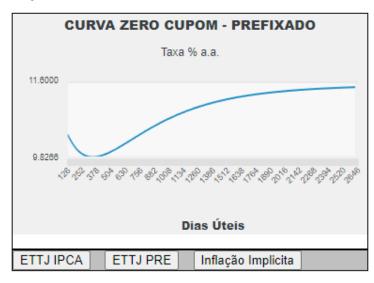
Estrutura a termo da taxa de juros

- Também chamada de Curva de Juros
- A Estrutura a Termo da Taxa de Juros (ETTJ) observada para um mercado é o conjunto de pares ordenados (taxa de juros, vencimento) dos títulos
- Podemos ter uma ETTJ para cada moeda ou indexador, assim como uma ETTJ para cada nível de Risco de Crédito do emissor do título.
- Por exemplo, curva do Tesouro Americano, Curva Corporates AAA, Curva IGPM, Curva IPCA, etc.

- Importância da estrutura a termo:
 - Calcular o valor de mercado de uma carteira de títulos;
 - Verificar possibilidades de arbitragem;
 - Avaliar riscos.

Como obter a Curva de Juros?

- Se as taxas pré-fixadas sem cupom são conhecidas, então basta uma forma de interpolação para os prazos não conhecidos (interpolação linear das taxas, ou capitalização das taxas a termo, interpolação por *cubic-spline*).
- Podemos construir também a ETTJ a partir de títulos com cupom, através de um procedimento conhecido como *Bootstrap*.

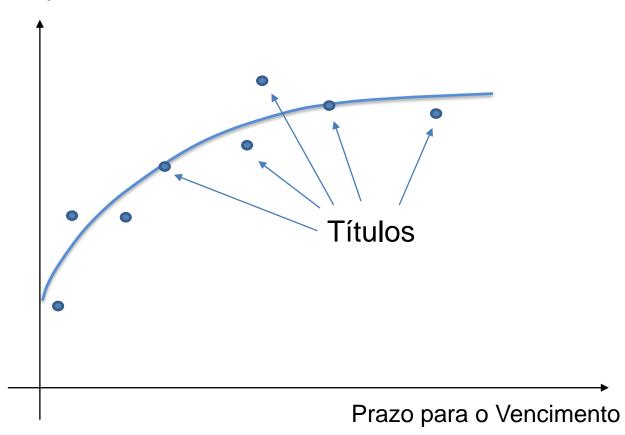

Curva de Juros ou ETTJ

Como estimar a Curva de Juros no Brasil?

- No Brasil, é mais fácil extrair a curva de juros pré-fixada a partir dos contratos Futuros de DI e os Swaps DI x Pré
 - Ambos são contratos derivativos em que uma parte paga uma taxa fixa (a taxa pré) e recebe uma taxa flutuante (taxa DI), e a outra parte possui o fluxo inverso.
- Também podemos construir a curva de juros a partir dos títulos do tesouro: https://www.anbima.com.br/pt_br/informar/curvas-de-juros-fechamento.htm
- A curva DI fica num patamar ligeiramente abaixo da curva dos títulos pré-fixados (LTN e NTN-F)

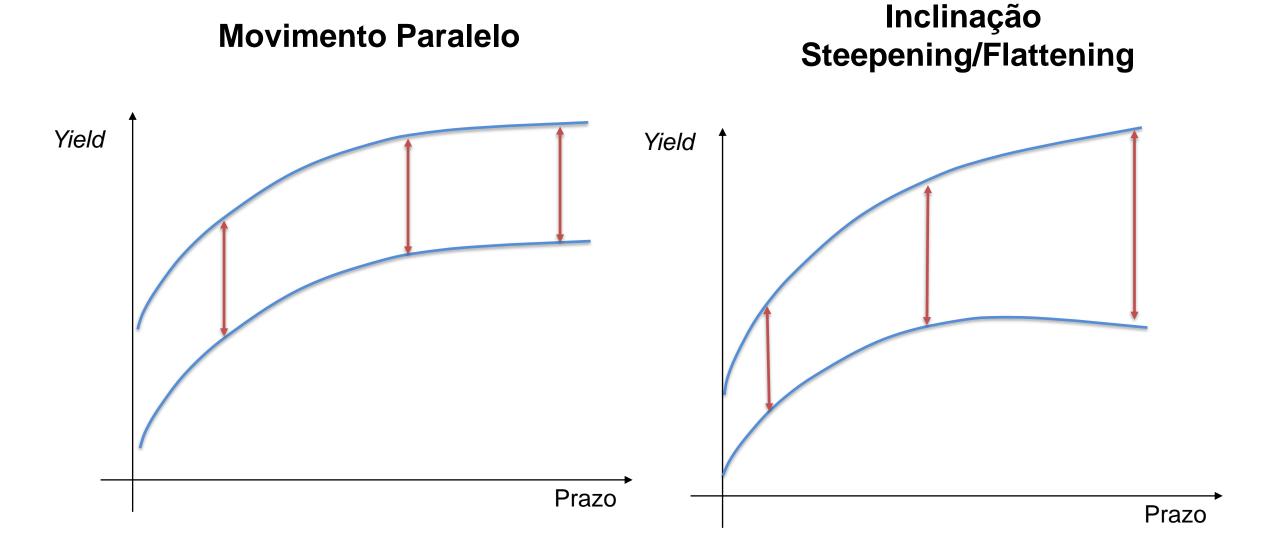
05/04/2024	Beta 1	Beta 2	Beta 3	Beta 4	Lambda 1	Lambda 2
PREFIXADOS	0,1161	-0,0121	-0,0556	0,0285	0,9454	0,4677
IPCA	0,0607	0,0346	-0,0541	-0,0024	2,0479	0,3811

Os parâmetros devem ser utilizados com todas as casas decimais disponíveis nos downloads


PREFIXADOS (CIRCULAR 3.361)				
Vértices	Taxa (%a.a.)	Vértices	Taxa (%a.a.)	
21	10,2852	504	10,1407	
42	10,1942	756	10,5204	
63	10,1177	1.008	10,8381	
126	9,9607	1.260	11,0673	
252	9,8786	2.520	11,4733	

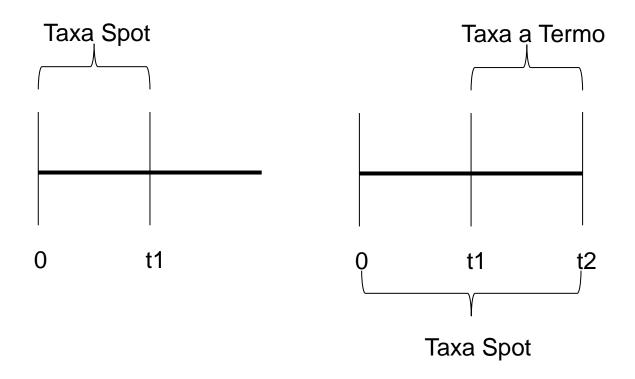
Erro Título a Título				
Título	SELIC	Vencimento	Erro (%a.a.)	
LTN	100000	01/07/2024	0,0241	
	100000	01/10/2024	-0,0253	
	100000	01/01/2025	0,0775	
	100000	01/04/2025	-0,0300	
	100000	01/07/2025	-0,0191	

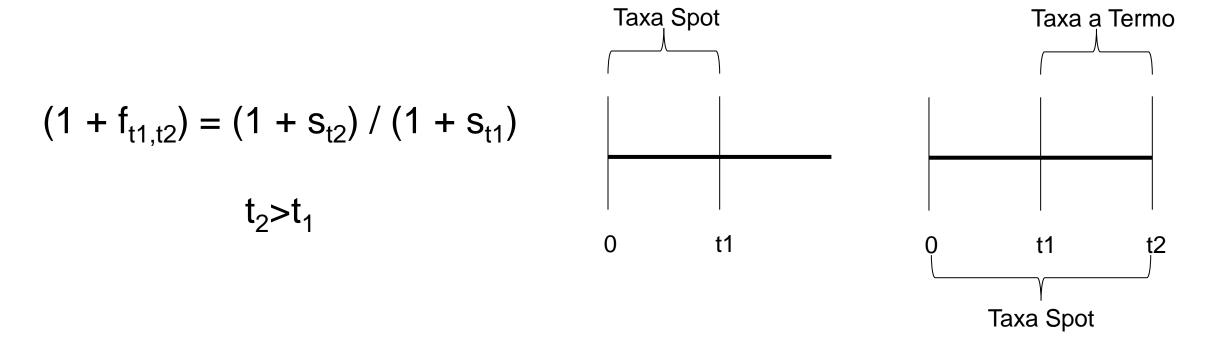
ETTJ / Inflação Implicita (IPCA) (%a.a./252)				
Vértices	ETTJ IPCA	ETTJ PRE	Inflação Implícita	
126	6,7716	9,9607	2,9868	
252	5,9009	9,8786	3,7560	
378	5,6655	9,9714	4,0750	
504	5,6331	10,1407	4,2672	
630	5,6586	10,3329	4,4239	
756	5,6954	10,5204	4,5650	
882	5,7299	10,6904	4,6916	
1.008	5,7595	10,8381	4,8020	
1.134	5,7843	10,9631	4,8956	
1.260	5,8052	11,0673	4,9733	
1.386	5,8230	11,1531	5,0368	
1.512	5,8385	11,2233	5,0877	
1.638	5,8520	11,2806	5,1284	
1.764	5,8641	11,3272	5,1604	
1.890	5,8749	11,3651	5,1855	
2.016	5,8847	11,3960	5,2050	
2.142	5,8937	11,4213	5,2199	
2.268	5,9018	11,4420	5,2314	
2.394	5,9093	11,4591	5,2401	
2.520	5,9162	11,4733	5,2466	
2.646	5,9226	11,4851	5,2514	
2.772	5,9285			
2.898	5,9341			
3.024	5,9392			
3.150	5,9440			
3.276	5,9485			
3.402	5,9527			
3.528	5,9566			


Curva de Juros ou ETTJ

Yield ou Taxa de Remuneração

Movimentos estilizados de Curvas de Juros


Movimentos estilizados de Curvas de Juros


- Taxa Spot ou à Vista
 - -É a taxa de juros do mercado entre a data atual (t_0) e uma data no futuro (T).

- Taxa Forward ou Termo
 - É a taxa de juros do mercado entre uma data no futuro (t_1) por um período determinado, mas negociada já na data atual (t_0)

Taxa spot x Taxa a termo

As taxas a termo são taxas para trechos da curva à vista $f_{t1,t2}$ - Taxa de juros a termo (*forward*) entre o período t_1 e o período t_2 s_t - Taxa de Juros Spot com prazo t

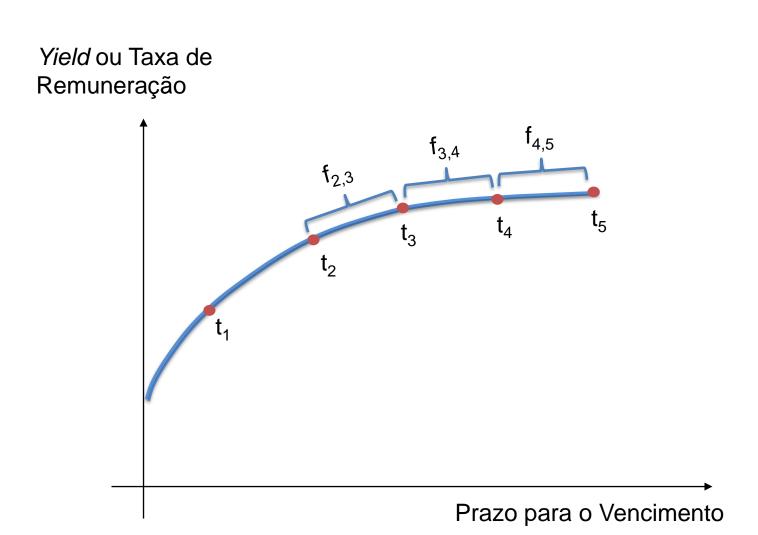
Exemplo com 3 períodos:

$$(1 + s_3) = (1 + s_1) (1 + f_{1,2})(1 + f_{2,3})$$

s₃ taxa spot para 3 meses

s₁ taxa spot para 1 mês

f_{1,2} taxa *forward* de um mês começando em 1 mês


f_{2,3} taxa *forward* de um mês começando em 2 meses

As taxas aqui não estão anualizadas

• Exemplo:

- Título pré-fixado (LTN) ou DI Futuro com vencimento em 2 anos tem taxa de 11% aa
- Título pré-fixado (LTN) ou DI Futuro com vencimento em 3 anos tem taxa de 12% aa
- A taxa *forward* de 1 ano para daqui a 2 anos é:

$$(1 + f_{2,3}) = (1 + s_3) / (1 + s_2)$$

 $f_{2,3} = (1,12^3) / (1,11^2) - 1 = 14,03\%$

- As taxas dos títulos prefixados sem cupons são exemplos de taxas à vista
- Os DI Futuros também são exemplos de taxas à vista
- Quando combinamos DI Futuros de prazos diferentes, podemos operar as taxas a termo
- Exemplo: comprando DI Futuro de agosto e vendendo o de setembro estamos apostando numa:
 - diminuição da taxa à termo agosto para setembro
 - Equivalente a um *flattening* da curva de juros

$$(1 + f_{8,9}) = (1 + s_9) / (1 + s_8)$$

- Duração (Macaulay *Duration*) Média ponderada dos prazos pelo valor presente de cada fluxo em relação ao valor presente total dos fluxos
- É uma medida da sensibilidade do título a mudanças nas taxas de juros
- Duração de uma carteira é a média ponderada das Durações individuais pelo peso de cada título na carteira

Propriedades da duração (duration):

- Quanto maior o prazo de vencimento do título, maior a duração;
- Quanto maior a taxa de juros (YTM), menor a duração;
- Quanto maior o cupom, menor a duração

Aplicação do conceito de duração

- Pode-se replicar um título ou uma carteira usando um título sintético, com o mesmo valor presente do título ou carteira e prazo igual a duração;
- O conceito de duração é utilizado para imunizar um fluxo de caixa.
- Descasamento de ativos e passivos
- Avaliação e atribuição de performance

A fórmula da duração (duration) é:

• Macaulay Duration:
$$D_{Mac} = \sum_{t=1}^{n} (t \cdot w_t) = \sum_{t=1}^{n} (t \cdot \frac{FC_t}{(1+i)^t}) \div PU$$

• Modified Duration:
$$D = \frac{D_{mac}}{(1+i/nc)^t}$$

Retorno do título pode ser aproximado (linearmente) por:

$$\frac{\Delta PU}{PU} \approx -(\Delta y) \cdot D$$

Exemplo

Aplicação do conceito de duração

- Considere uma carteira de títulos prefixados com duração de 3 anos
- Imagine que o gestor está preocupado com o risco de uma subida geral das taxas prefixadas, ou seja, um movimento paralelo para cima da curva de juros prefixada.
- Para eliminar esse risco, pode-se comprar um DI Futuro com prazo de 3 anos
- Pode-se também usar os contratos futuros para diminuir a duration da carteira e reduzir o risco, mas sem eliminá-lo

Convexidade

Forma mais precisa de cálculo aproximado da sensibilidade do retorno de um título:

$$r = \frac{\Delta PU}{PU} \approx -(\Delta y) \cdot D + 0.5(\Delta y)^2 \cdot C$$

Aqui estamos incluindo um termo de segunda ordem na aproximação: a Convexidade (C).

Convexidade

A fórmula da Convexidade é:

$$C = \frac{\partial^2 PU / \partial i^2}{PU} = \frac{\sum_{j=1}^n \frac{t(t+1) \cdot CF_j}{(1+y/k)^{t+2} k^2}}{PU}$$

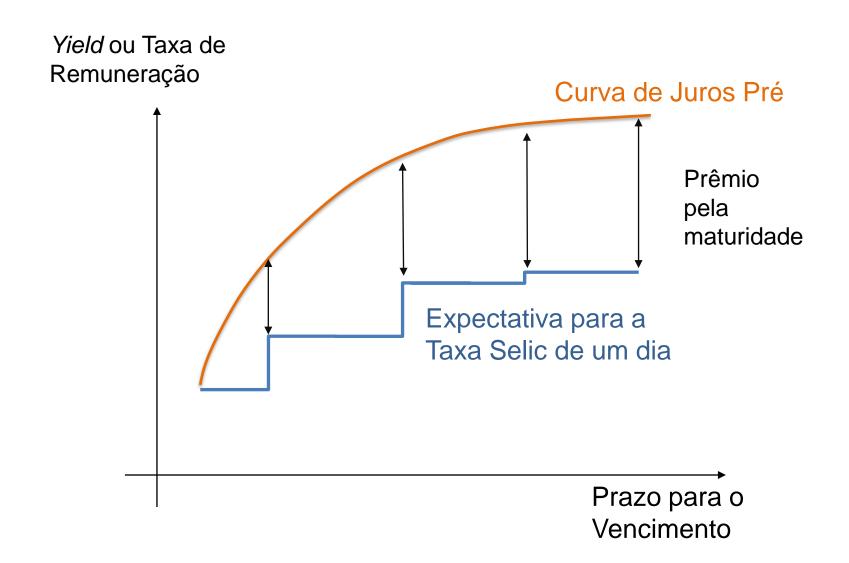
- CFi = fluxo de caixa do título
- t = tempo em que ocorre o fluxo de caixa
- n = número de períodos até maturidade
- P = preço do título
- y = taxa interna de retorno (yield to maturity)
- k = freqüência de pagamento do cupom
- A convexidade sempre tem efeito positivo no valor de um título, independente da direção do movimento da taxa de juros

Convexidade

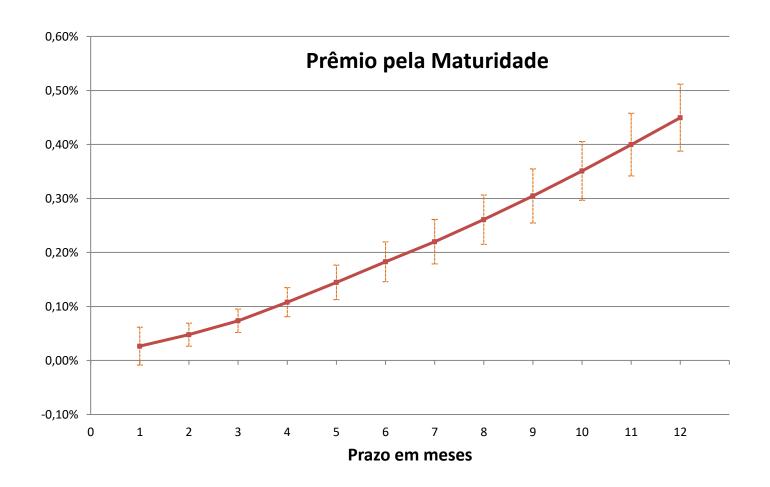
Para grandes variações na taxa de juros podemos calcular as variações de preço considerando a convexidade.

Considere o exemplo:	Duração	4.401	
•	Duração Modificada	4.152	
	Convexidade	22.467	
	Variação <i>Yield</i>	0.60%	

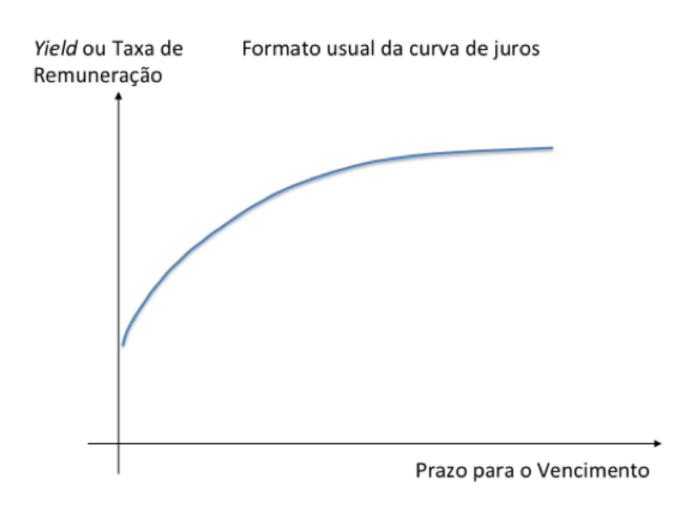
$$\frac{\Delta PU}{PU} \approx -(\Delta i) \cdot D + 0.5(\Delta i)^2 \cdot C \longrightarrow ^{-2,4508\%}$$

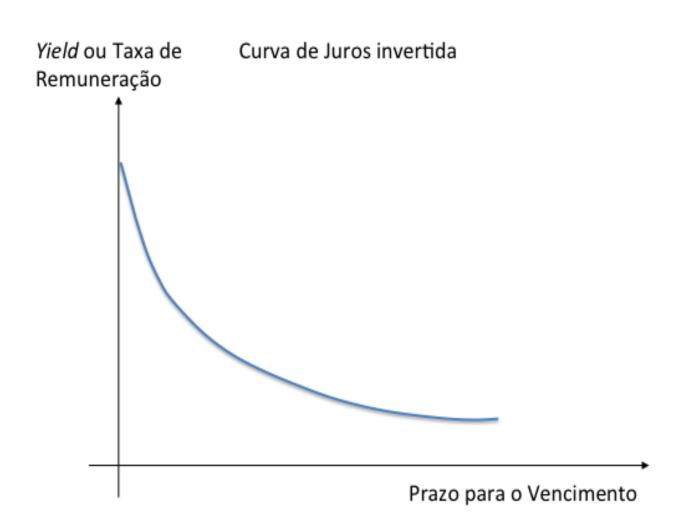

$$-2,4912\% \qquad 0,0404\%$$

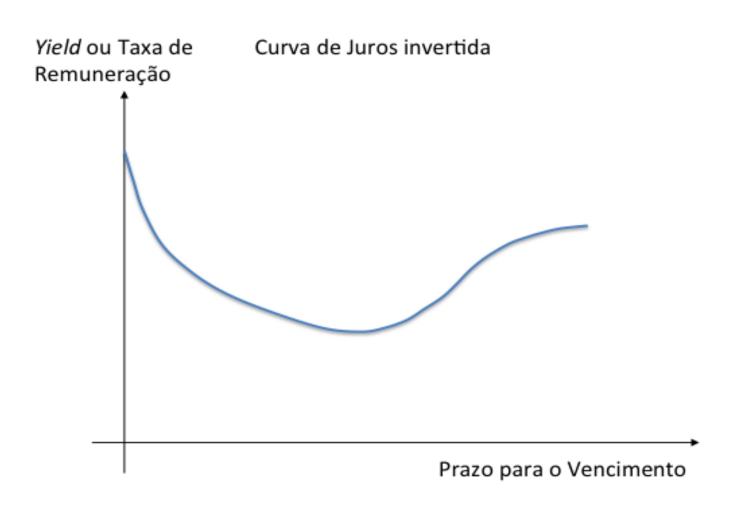
Neste exemplo o retorno real do título foi de -2,4513%

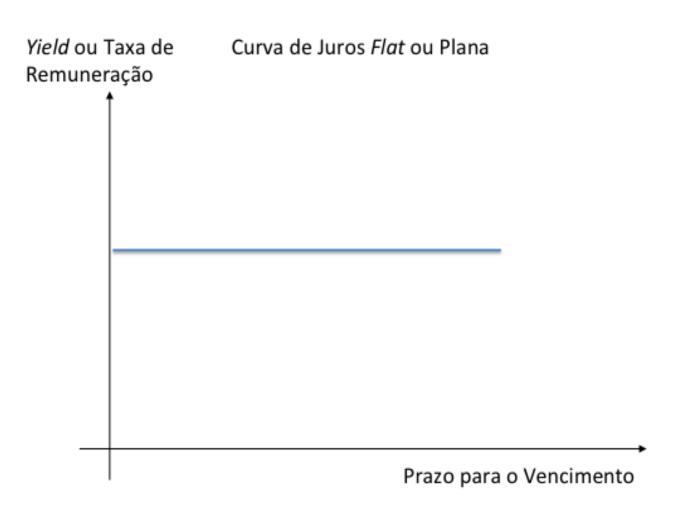

- Formato das curvas de juros (pré-fixadas) depende fundamentalmente das expectativas para o futuro da taxa básica de juros, a Taxa Selic.
- Já o futuro da taxa Selic depende do ciclo da economia, e do comportamento esperado do Banco Central
- As percepções de risco dos agentes também são importantes

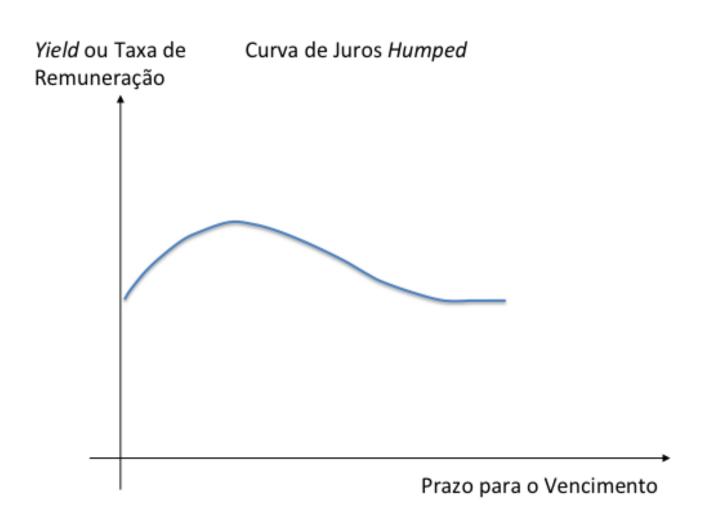
- Além das expectativas em si, outro fator importante é o chamado prêmio pela maturidade (*term premium*)
- O prêmio pela maturidade é uma compensação que os investidores requerem dos emissores para carregar títulos préfixados com prazos mais longos
- Por exemplo, se a expectativa para a taxa Selic é de 10% para os próximos 3 meses, e a taxa de um título de 3 meses é de 10,25%, então o prêmio pela maturidade é de 0,25%




• A ideia é que quanto maior o prazo do título, mais arriscado ele é, e por isso uma taxa adicional seria necessária para atrair os investidores


Formato Usual


Formato Invertido


Formato Invertido

Formato Plana ou Flat

Formato Humped

Teorias das Curvas de Juros

Teorias das Curvas de Juros

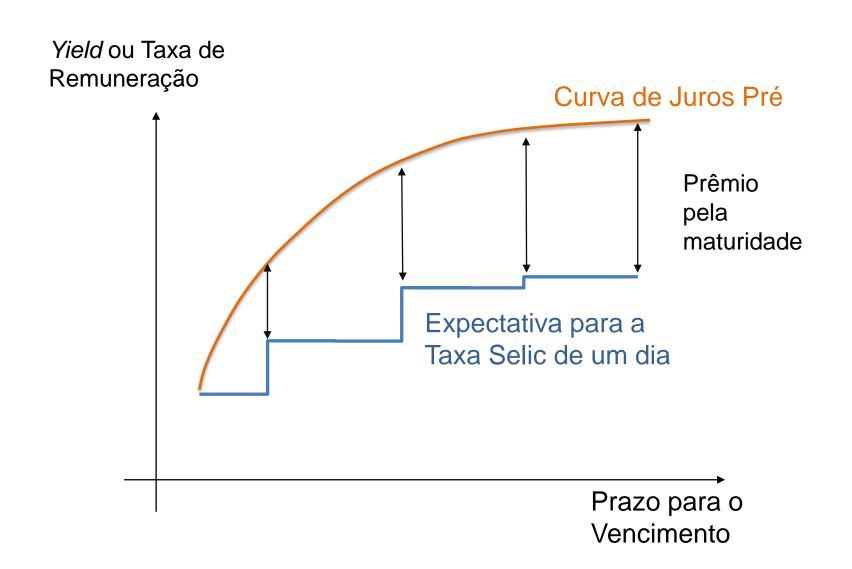
- Existem várias teorias para explicar como a curva de juros é determinada
- Vamos analisar 4 delas:
 - 1. Expectativas Puras
 - 2. <u>Preferência por liquidez</u>
 - 3. Segmentação de mercado
 - 4. Habitat preferido

Expectativas Puras

- a forma da curva de juros depende exclusivamente das expectativas dos investidores acerca das taxas de juros futuras.
- As taxas de títulos de longo prazo seriam iguais à média (geométrica) das taxas de curto prazo da data atual até o vencimento do título.
- As taxas futuras seriam estimativas imparciais sobre as taxas a vista futuras.

Expectativas Puras

- Mas a evidência empírica mostra porque que as taxas a termo são estimadores viesados para cima das taxas futuras de curto prazo.
- Além disso, esta Teoria não é capaz de explicar a persistência do formato normal da curva.
 - Isso porque ela despreza os riscos inerentes ao investimento em títulos de renda fixa.


Preferência por liquidez

- A teoria da Preferência pela liquidez é uma extensão da teoria das expectativas Pura
- Supõe que as taxas de juro de longo prazo vão depender:
 - das expectativas dos investidores sobre as taxas de juros futuras
 e
 - também incluir um prêmio de risco para deterem títulos com vencimentos mais longos, já que os investidores preferem títulos mais curtos a mais longos.

Preferência por liquidez

- Este prêmio é chamado de **prêmio pela maturidade** ou prêmio de liquidez.
- Ele compensa os investidores pelo risco adicional de ter seu dinheiro amarrado por um longo período
- Assume-se que o prêmio é monotonicamente crescente com o prazo do título
- Devido a esse prêmio, as taxas dos títulos de longo prazo tendem a serem maiores do que as de curto prazo, e portanto a curva de juros tende a ser positivamente inclinada.
- Esta é uma das teorias mais aceitas, e possui suporte em evidência empírica.

Preferência por liquidez

Expectativas Puras x Preferência por Liquidez

Questão:

Se a taxa Selic está em 14% e a taxa de um ano é de 14,5%, podemos dizer que há uma expectativa de alta na taxa Selic?

Expectativas Puras x Preferência por Liquidez

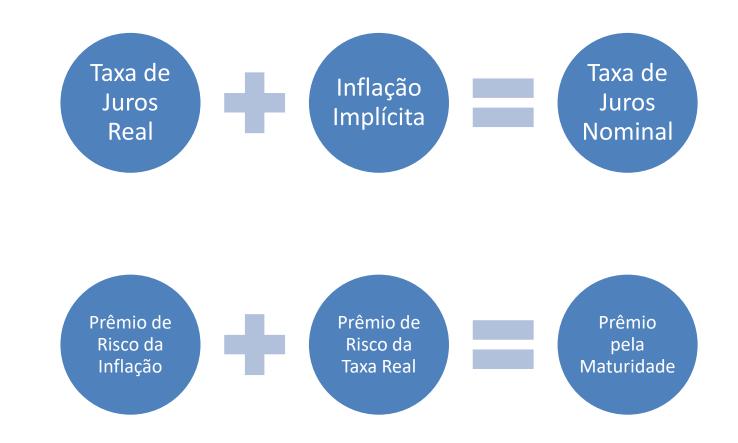
Questão:

Num ciclo de alta dos juros básicos, é melhor comprar uma LFT ou título pré-fixado de curto prazo (3 meses, por exemplo) do que um título pré-fixado de longo prazo (dez anos, por exemplo) ?

Segmentação de mercado

- Os instrumentos financeiros de prazos diferentes não são substituíveis.
- Com isso, a <u>oferta e demanda</u> nos mercados de prazos diferentes são determinadas em grande parte de forma <u>independente</u>.
- Assume também que os investidores preferem títulos de curto prazo a de longo prazo.
- Isso explica o fato estilizado de que os *yields* de curto prazo são geralmente mais baixos do que os de longo prazo.
- Portanto, esta teoria explica a predominância da forma normal da curva.
- No entanto, não consegue explicar o fato de que os rendimentos dos diversos prazos tendem a se mover juntos

Habitat preferido


- A teoria habitat preferido contém elementos da teoria da preferência de liquidez e da segmentação de mercado.
- Nela, além das expectativas de taxas de juros de curto prazo futuras, os investidores têm horizontes de investimento distintos e irão exigir um prêmio significativo para comprar títulos com vencimentos fora do seu vencimento "preferido", ou seu habitat.
- Assume-se que investidores de curto prazo são mais presentes no mercado de renda fixa e, portanto, as taxas de mais longo prazo tendem a ser maiores do que as de curto prazo.
- Esta teoria é consistente tanto com a persistência do formato usual da curva, quanto com os deslocamentos paralelos.

Curva de Juros Reais

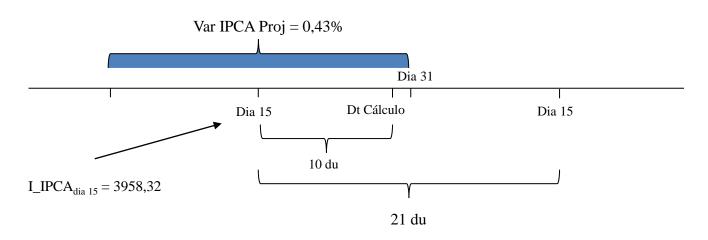
- As teorias sobre curvas de juros são focadas nas curvas nominais (pré-fixadas)
- Nas curvas de taxas de juros reais (NTN-B, NTN-C) não temos a presença do Prêmio pela maturidade "completo", mas sim do prêmio a termo "real" (acima da inflação)
- As taxas das NTN-Bs não possuem risco relacionado a um aumento da inflação, e por isso o prêmio deveria ser menor
- De fato, comparando a Curva Nominal (NTN-F, LTN) com a curva real (NTN-B), podemos calcular a chamada "Inflação Implícita"

Curva de Juros Reais

Podemos visualizar a questão da seguinte forma:

Anexo

Índice IPCA: IPCA Projetado


• Exemplo de cálculo do Índice IPCA pró-rata

Considere o seguinte cenário:

- o valor do último Índice IPCA foi de 3.958,320;
- a prévia de inflação divulgada pela Anbima é de 0,43% para o próximo mês;
- o número de dias úteis entre o 15° dia do mês do IPCA projetado e o 15° dia do mês de referência (exclusive) é de 21 dias úteis (o mês de referência é o mês da data atual); e
- o número de dias úteis entre o 15º dia do mês do IPCA projetado e data de cálculo e o é de dez dias úteis.

Índice IPCA: IPCA Projetado

O índice IPCA utilizado está sempre defasado de 15 dc (Ocorre como se o índice IPCA estivesse sempre 15 dias depois)

O índice IPCA do dia 15 leva em conta a inflação até o último mês.

O valor pro rata do índice é $3.958,320 \times (1 + 0,43\%)^{10/21} = 3.966,416$

DAP x SWAP DI x IPCA

Comprado em 1 contrato de DAP: a soma dos ajustes até o vencimento é

$$= (PU \times (1 + C_{IPCA_{realizado}}) - 100.000) \times 0,00025 \times I_{IPCA_{venc}}$$

$$= \left(PU \times \frac{1 + DI}{1 + IPCA} - PU \times (1 + C_{IPCA_{DAP}})\right) \times 0,00025 \times I_{IPCA_{OAP}}$$

$$0,00025 \times I_{IPCA_{OAP}} \times (1 + IPCA)$$

=
$$0.00025 \times PU \times I_IPCA_0((1+DI) - (1+C_IPCA_{DAP}) \times (1+IPCA))$$

DAP x SWAP IPCA-DI

Soma dos ajustes =

$$0,00025 \times PU \times I_IPCA_0((1+DI) - (1+C_IPCA_{DAP}) \times (1+IPCA))$$

Desta forma, comprado em 1 contrato de DAP é o mesmo que realizar um swap DI x IPCA em que se recebe DI e se paga C_IPCA e IPCA com montante igual a 0,00025 x PU x I_IPCA₀.

A diferença é que o swap não tem ajustes diários.

DAP (Outra forma de ver)

Outra forma de ver a soma dos ajustes até o vencimento:

$$0,00025 \times PU \times I_IPCA_0((1+DI) - (1+C_IPCA_{DAP}) \times (1+IPCA))$$
 (equação que já tínhamos visto)

$$0,00025 \times PU \times I_IPCA_0 \times \\ \left((1+C_IPCA_{Realizado}) \times (1+IPCA) - (1+C_IPCA_{DAP}) \times (1+IPCA) \right) \\ 0,00025 \times PU \times I_IPCA_0 \times (1+IPCA) \times \\ \left((1+C_IPCA_{Realizado}) - (1+C_IPCA_{DAP}) \right)$$

$$0,00025 \times PU \times I_IPCA_{venc} \times (C_IPCA_{Realizado} - C_IPCA_{DAP})$$

Portanto, há 3 formas de observar resultado do DAP (por contrato)

Soma dos ajustes por contrato comprado é

$$a) \left(PU \times (1 + \text{C_IPCA}_{\text{realizado}}) - 100.000\right) \times 0,00025 \times \text{I_IPCA}_{\text{venc}}$$

$$b) 0,00025 \times \text{PU} \times \text{I_IPCA}_{0} \left((1 + \text{D}I) - (1 + \text{C_IPCA}_{\text{DAP}}) \times (1 + \text{IPCA}) \right)$$

$$c) 0,00025 \times \text{PU} \times \text{I_IPCA}_{\text{venc}} \times \left(\text{C_IPCA}_{\text{Realizado}} - \text{C_IPCA}_{\text{DAP}} \right)$$

Interpretação: como se a aposta fosse de $0,00025 \times PU \times I_IPCA_0$ em valores reais na diferença entre o cupom de IPCA realizado e o prefixado.

Exemplo – hedge Pré por Pós

Como o investidor está vendido em cupom de IPCA, ele deve comprar contratos. Quantidade:

$$\#contratos = \frac{1000 \times 936,33}{0,00025 \text{ x PU x I_IPCA}_0} = 10$$

Exemplo – hedge Pré por Pós

IPCA = 2% e CDI = 10%. Cupom de IPCA efetivo = 7,84% Índice IPCA = 4080

Hedge = $[(PU \times (1+C_IPCA_{efet}) - 100.000] \times I_IPCA_T \times 0,00025 = 9.963,00$

NTN-B = 1.020.000

FCL = 1.029.963 que é o investimento indexado ao CDI; ou o investimento indexado ao IPCA (constante em poder de compra) e indexado ao Cupom de IPCA realizado

Exemplo – hedge Pré por Pós

O investidor trocou um fluxo de caixa (constante em poder de compra) indexado a uma taxa de juros real prefixada por um fluxo de caixa indexado a uma taxa de juros real pós-fixada

Especulação mostrando o Ajuste Diário

Um investidor, com expectativa de alta na inflação implícita, opera 10.000 contratos de DAP às 15:00 a 4,55% a 29 d.u. do vencimento (dados de 13/2/2023 com vencimento em 15/5/2023 – K23)

Neste mesmo dia (t = 0), o PU de ajuste do DAP foi 98.934,92 e o índice IPCA era 6.505,28.

Especulação mostrando o Ajuste Diário

Nos dias seguintes:

- t = 1: PU de ajuste = 98.959,22, I_IPCA = 6.506,84
- t = 2, PU de ajuste = 98.976,77, I_IPCA = 6.508,40
- O investidor fecha posição em t=3 às 14:00 a 4,45% a.a., I_IPCA = 6.511,32
- A taxa DI destes dias é sempre 13,65% a.a.

Especulação mostrando o Ajuste Diário

Resultado da operação: 243.289,65

(para chegar nesse resultado deve-se reajustar os ajustes diários à taxa DI até a saída do mercado)

O resultado é a diferença dos PUs de saída e entrada na posição reajustado pela cupom de IPCA realizado no período, multiplicado por 0,00025, pelo índice IPCA e pelo número de contratos.

NTN-B Sintética

Exemplo: Um investidor tem R\$1.052.631,58 e quer comprar NTNBs principais para 1 ano, mas esses títulos não têm liquidez no momento. O DAP para 1 ano está sendo negociado a 4,5% a.a e o índice IPCA vale 4.000

Suponha que haja títulos indexados a 100% da taxa DI disponíveis.

NTN-B Sintética

Solução: investir a 100% do DI e vender contratos de DAP.

$$PU = 100.000/(1+4,5\%) = 95.693,78$$

$$\# contratos = \frac{1.052.631,58}{0,00025 \times 95693,78 \times 4000} = 11$$

Suponha que o DI acum = 12% e a Var do IPCA = 5%

Então, o cupom de IPCA realizado é 6,667% e o I_IPCA = 4.200

NTN-B Sintética

Soma dos ajustes do DAP = $-0.00025 \times 95.636.98 \times 4200 \times (6.667\% - 4.5\%) \times 11 = -23.947.37$

Ativo indexado ao DI = 1.178.947,37

FCL = 1.155.000,00

O Retorno é 9,73% (que é exatamente o retorno de uma NTNB principal que venceria em 1 ano)

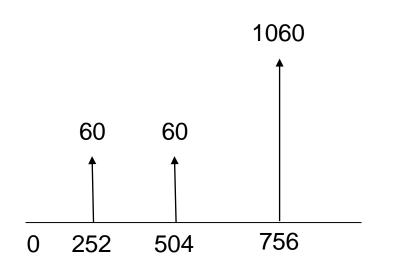
Avaliação de Títulos de Renda Fixa

Fundamentos da Avaliação de Ativos

"O preço de qualquer ativo é o valor presente de todos os seus fluxos de caixa futuros."

- Para isso é necessário:
 - Estimativa do Fluxo de Caixa
 - Taxa de desconto

• No caso da Renda Fixa, o fluxo de caixa é muito mais previsível do que em ações, por exemplo


Exemplo – Avaliação de Títulos

Considere a curva de juros Pré-Fixada do dia 19/03/2010.

- a) Calcule o valor justo para o dia 19/03/2010 de um título (semelhante a uma NTN-F) com as seguintes características:
 - Vencimento em 3 anos (756 dias úteis ou 25/03/2013)
 - Valor de face no vencimento: R\$ 1.000,00
 - Pagamento de juros anuais fixos de 6% em:
 - 22/3/2011 (252 dias úteis)
 - 21/03/2012 (504 dias úteis)
 - 25/03/2013 (756 dias úteis)

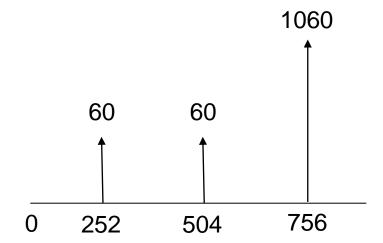
Exemplo

	Vértices	ETTJ PRE
	(Dias Uteis)	(% ao ano)
	126	9,6363
	252	10,7784
	378	11,5014
	504	11,911
	630	12,1448
	756	12,2861
	882	12,3796
	1.008	12,4484
	1.134	12,5053
	1.260	12,5564
	1.386	12,6053
,	1.512	12,6539
	1.638	12,7029
	1.764	12,7527
	1.890	12,8033
	2.016	12,8545
	2.142	12,9061
	2.268	12,958
	2.394	13,0097
	2.520	13,0612
	2.646	13,1121
'		

Vértices (Dias Uteis)	ETTJ PRE (% ao ano)
126	9.6363
252	10.7784
378	11.5014
504	11.911
630	12.1448
756	12.2861

$$P = 60 / [(1,107784)^{252/252} + 60/(1,11911)^{504/252} + 1060/(1,122861)^{756/252}]$$

$$P = 60 / [(1,107784) + 60/(1,11911)^2 + 1060/(1,122861)^3]$$


$$P = 850,80$$

Exemplo – Avaliação de Títulos

b) Se a curva de juros se deslocasse para cima em 50 pontos-base (meio ponto percentual), qual seria o impacto no preço desse título?

Vértices (Dias Uteis)	ETTJ PRE (% ao ano)
126	9.6363
252	10.7784
378	11.5014
504	11.911
630	12.1448
756	12.2861

Vértices (Dias Uteis)	ETTJ PRE (% ao ano)
126	9.6363 + 0.50 = 10.1363
252	10.7784 + 0.50 = 11.2784
378	11.5014 + 0.50 = 12.0014
504	11.911 + 0.50 = 12.411
630	12.1448 + 0.50 = 12.6448
756	12.2861 + 0.50 = 12.7861

 $P = 60/(1,112784)^{252/252} + 60/(1,12411)^{504/252} + 1060/(1,127861)^{756/252}$

 $P = 60/1,112784 + 60/(1,12411))^2 + 1060/(1,127861)^3$

P = 840,22

O preço do título cairia 1,24%.

Exemplo

Questão: O que aconteceria com um preço de uma LFT neste cenário de subida de juros?